Quantum chemical calculations of sulfate adsorption at the Al- and Fe-(hydr)oxide-H20 interface-estimation of gibbs free energies.
نویسندگان
چکیده
Quantum chemical calculations were performed to estimate relative Gibbs free energies of sulfate adsorption on variably charged Al- and Fe-(hydr)oxide clusters. Innersphere bidentate bridging and monodentate adsorption were predicted to be exergonic on positively charged Al- and Fe-(hydr)oxides (ranging from -19 to -124 kJ mol-1). However, inner-sphere and H-bonded adsorption on neutral Al- and Fe-(hydr)oxides was predicted to be endergonic (ranging from +5 to +61( kJ mol-1)). Atthe highest positive surface charge, bidentate bridging adsorption was most thermodynamically favorable. At intermediate positive surface charge, bidentate bridging and monodentate adsorption energies were equivalent on Al-(hydr)oxides; monodentate adsorption was more thermodynamically favorable on Fe-(hydr)oxides as compared with bidentate bridging adsorption. The predicted thermodynamic favorability of sulfate adsorption on Al- and Fe-(hydr)oxides was directly related to positive surface charge and indirectly related to the HO-/SO42- exchange stoichiometry, chi. Predicted Gibbs free energies of bidentate bridging and monodentate sulfate adsorption on an Fe-(hydr)oxide cluster (charge = +1, chi = 1) agreed reasonably well with published experimental estimates of sulfate adsorption on geothite (predicted values -34 and -52 kJ mol-1, respectively, and experimental range -36 to -30 kJ mol-').
منابع مشابه
Adsorption of Metronidazole drug on the surface of nano fullerene C60 doped with Si, B and Al: A DFT study
In this research, the quantum mechanics calculations were carried out to elucidate the adsorption behavior of metronidazole drug on the surface of pristine as well as doped C60 fullerene with Si, B and Al using density functional theory (DFT) at B3LYP/6-31G(d,p) level. After optimization of the structures, various parameters such as HOMO and LUMO energies, gap energy, adsorption ener...
متن کاملQuantum chemical studies on adsorption of imidazole derivatives as corrosion inhibitors for mild steel in 3.5 NaCl solution
Adsorption of benzimidazole, 2-methylbenzimidazole and 2-aminobenzimidazole on mild steel in 3.5 NaCl solution was studied using density function theory DFT calculations. In this regard, charge transfer resistance Rct and double layer capacitance Cdl obtained by electrochemical impedance spectroscopy EIS were used to calculate surface coverage and to build prediction models. When prediction mod...
متن کاملElectronic Properties of Hydrogen Adsorption on the Silicon- Substituted C20 Fullerenes: A Density Functional Theory Calculations
The B3LYP/6-31++G** density functional calculations were used to obtain minimum geometries and interaction energies between the molecular hydrogen and nanostructures of fullerenes, C20 (cage), C20 (bowl), C19Si (bowl, penta), C19Si (bowl, hexa). The H2 molecule is set as adsorbed in the distance of 3Å at vertical position from surface above the pentagonal and hexagonal sites of nanostructures. ...
متن کاملTheoretical study of Drug Delivery on Sn (CH3)2(N-acetyl-L-cysteinate) with SWCNT
The interaction of anticancer drug Sn (CH3)2(N-acetyl-L-cysteinate) with carbon nanotube (CNT)is investigated by Quantum chemical ab initio calculations at FIF/ (LanL2DZ+STO-3G) and HF/(LanL2DZ+6-31G) levels in gas phase and solution. The solvent effect is taken into account viathe self-consistent reaction field (SCRF) method. Carbon nanotubes can act as a suitable drugdelivery vehicle for inte...
متن کاملSulphate adsorption at the Fe (hydr)oxide–H2O interface: comparison of cluster and periodic slab DFT predictions
The transport and bioavailability of sulphate in soils are significantly affected by adsorption reactions at the mineral–H2O interface. Therefore, an understanding of the mechanisms and kinetics of sulphate adsorption is of fundamental importance in soil chemistry. In this investigation, the binding geometries of bidentate bridging and monodentate sulphate complexes at the Fe (hydr)oxide–H2O in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 40 24 شماره
صفحات -
تاریخ انتشار 2006